
Tutorial 7 MATH2050A Mathematical Analysis I 24/10/2019

Review on Week 6/7

Cluster Point

When talking about limit, we need to consider points that are “close” to each other.

Definition (c.f. Definition 4.1.1). Let A ⊆ R. A point c ∈ R is said to be a cluster point of
A if for every δ > 0, there exists some x ∈ A and x 6= c such that |x− c| < δ.

Remark. The point c may or may not be in A. Also, points in A may or may not be a
cluster point. Observe the following examples:

Example (c.f. Example 4.1.3). Let’s visualize the sets and find their cluster points.

(a) The set of cluster point of A1 = (0, 1) is [0, 1].

(b) The set of cluster point of A2 = {0, 1} is ∅.

(c) The set of cluster point of A3 = N is ∅.

(d) The set of cluster point of A4 = {1/n : n ∈ N} is {0}.

(e) The set of cluster point of A5 = Q is R.

Theorem (c.f. Theorem 4.1.2). Let A ⊆ R and c ∈ R. c is a cluster point of A if and only
if there exists a sequence (an) in A such that lim(an) = c and an 6= c for all n ∈ N.

Limit of Function

The definition of limit of a function is similar to that of a sequence.

Definition (c.f. Definition 4.1.4). Let c be a cluster point of A ⊆ R and let f : A→ R be a
function. A real number L is said to be a limit of f at c, if for any ε > 0, there exists δ > 0
such that whenever x ∈ A and 0 < |x− c| < δ,

|f(x)− L| < ε.

In this case, f is said to converge to L at c and we denote

L = lim
x→c

f(x).

Remark. We can only discuss the limit of a function at cluster points of its domain. For
example, if f is a function defined on A4 in the previous example, then we can only talk
about the limit of f at 0. Also, if a function converges at a point, then the limit is unique.

Since we can formulate cluster point by sequence, limit of functions can also be formulated
by sequence.

Theorem (c.f. Theorem 4.1.8). Let c be a cluster point of A ⊆ R and let f : A → R be a
function. Let L ∈ R. The following are equivalent:

(i) lim
x→c

f(x) = L.

(ii) For every sequence (xn) in A that converges to c such that xn 6= c for all n ∈ N, the
sequence (f(xn)) converges to L.
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Divergence Criteria (c.f. 4.1.9). Let c be a cluster point of A ⊆ R and let f : A → R be
a function.

(a) If L ∈ R, then f does not have a limit L at c if and only of there exists a sequence
(xn) in A with xn 6= c for all n ∈ N such that the sequence (xn) converges to c but the
sequence (f(xn)) does not converge to L.

(b) The function f does not have a limit at c if and only of there exists a sequence (xn) in
A with xn 6= c for all n ∈ N such that the sequence (xn) converges to c but the sequence
(f(xn)) does not converge in R.

Limit at Infinity

Definition (c.f. Definition 4.3.10). Let A ⊆ R with (a,∞) ⊆ A for some a ∈ R and let
f : A→ R be a function. L ∈ R is said to be a limit of f as x→∞ if for any ε > 0, there
exists K > a such that

|f(x)− L| < ε, ∀x > K.

In this case, we write
lim
x→∞

f(x) = L.

Remark. Can you formulate the definition for the limit as x→ −∞?

Theorem (c.f. Theorem 4.3.11). Let A ⊆ R with (a,∞) ⊆ A for some a ∈ R and let
f : A→ R be a function. Let L ∈ R. The following are equivalent:

(i) lim
x→∞

f(x) = L.

(ii) For every sequence (xn) in (a,∞) that is properly divergent to ∞, the sequence (f(xn))
converges to L.

Examples

Example 1. Establish the convergence of the following limits.

(a) lim
x→10

x2. (b) lim
x→2

x3 − 4

x2 + 1
. (c) lim

x→∞

2x2 + x+ 1

x2 + 3
.

Solution. We prove them by definition.

(a) Note that
|x2 − 100| = |x+ 10||x− 10|, ∀x ∈ R.

If |x− 10| < 1, then
|x+ 10| ≤ |x− 10|+ 20 < 21.

Let ε > 0. Take δ = min{ε/21, 1}. Then whenever 0 < |x− 10| < δ,

|x2 − 100| = |x+ 10||x− 10| < 21δ ≤ ε.

Hence lim
x→10

x2 = 100.
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(b) Note that∣∣∣∣x3 − 4

x2 + 1
− 4

5

∣∣∣∣ =
|5x3 − 4x2 − 24|

5(x2 + 1)
=
|5x2 + 6x+ 12|

5(x2 + 1)
|x− 2|, ∀x ∈ R.

If |x− 2| < 2, then 0 < x < 4, so

|5x2 + 6x+ 12|
5(x2 + 1)

<
5(4)2 + 6(4) + 12

5(02 + 1)
=

116

5
.

Let ε > 0. Take δ = min{2, 5ε/116}. Then whenever 0 < |x− 2| < δ,∣∣∣∣x3 − 4

x2 + 1
− 4

5

∣∣∣∣ < 116

5
δ ≤ ε.

Hence lim
x→2

x3 − 4

x2 + 1
=

4

5
.

(c) Note that ∣∣∣∣2x2 + x+ 1

x2 + 3
− 2

∣∣∣∣ =
|x− 5|
x2 + 3

≤ |x− 5|
(x− 5)2 + 10x− 22

, ∀x ∈ R.

If x > 22/10 = 11/5, then∣∣∣∣2x2 + x+ 1

x2 + 3
− 2

∣∣∣∣ < |x− 5|
(x− 5)2 + 10x− 22

<
|x− 5|

(x− 5)2 + 0
=

1

x− 5
.

Let ε > 0. Take K = max{11/5, 1/ε+ 5}. Then whenever x > K,∣∣∣∣2x2 + x+ 1

x2 + 3
− 2

∣∣∣∣ < 1

x− 5
<

1

K − 5
≤ ε.

Hence lim
x→∞

2x2 + x+ 1

x2 + 3
= 2.

Example 2. Show that the following limit does not exist.

(a) lim
x→0

1

x
. (b) lim

x→∞
sin(x).

Solution. We can apply Divergence Criteria.

(a) Consider the sequence (1/n). Note that 1/n 6= 0 for all n ∈ N and lim 1/n = 0. Also,
the sequence (1/(1/n)) = (n) is divergent. Hence the limit does not exist.

(b) Consider the sequence (nπ/2). Note that this sequence is properly divergent to ∞.
Also, the sequence sin(nπ/2) = (1, 0,−1, 0, 1, 0, ...) is divergent. Hence the limit does
not exist.
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Exercises

Question 1 (c.f. Section 4.1, Ex.10(b)). Use the definition of limit to show that

lim
x→−1

x+ 5

2x+ 3
= 4.

Solution. Note that ∣∣∣∣ x+ 5

2x+ 3
− 4

∣∣∣∣ =
7

|2x+ 3|
|x+ 1|, ∀x ∈ R.

If |x+ 1| < 1/4, then −5/4 < x < −3/4. Hence

1

2
< 2x+ 3 <

3

2
.

Let ε > 0. Take δ = min{1/4, ε/14}. Then whenever 0 < |x+ 1| < δ,∣∣∣∣ x+ 5

2x+ 3
− 4

∣∣∣∣ < 7

1/2
δ ≤ ε.

The result follows.

Question 2 (c.f. Section 4.1, Ex.8). Show that lim
x→c

√
x =
√
c for any c > 0.

Solution. Note that

|
√
x−
√
c| = |x− c|√

x+
√
c
≤ |x− c|√

c
, ∀x ≥ 0.

Let ε > 0. Take δ = ε
√
c. Then whenever 0 < |x− c| < δ and x ≥ 0,

|
√
x−
√
c| ≤ |x− c|√

c
<

δ√
c

= ε.

Question 3 (c.f. Section 4.3, Ex.9). Show that if f : (a,∞)→ R is such that lim
x→∞

xf(x) = L

where L ∈ R, then lim
x→∞

f(x) = 0.

Solution. Note that

|f(x)− 0| = 1

x
|xf(x)| ≤ 1

x
(|xf(x)− L|+ |L|), ∀x > 0.

Since lim
x→∞

xf(x) = L, there exists K1 > a such that whenever x > K1,

|xf(x)− L| < 1.

It follows that whenever x > 0 and x > K1,

|f(x)− 0| ≤ 1

x
(1 + |L|).

Let ε > 0. Take

K = max

{
0, K1,

1 + |L|
ε

}
.

Then whenever x > K,

|f(x)− 0| ≤ 1 + |L|
x

<
1 + |L|
K

≤ ε.
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Question 4 (c.f. Section 4.1, Ex.14). Suppose the function f : R→ R has limit L at 0, and
let a > 0. If g : R→ R is defined by g(x) = f(ax) for x ∈ R, show that lim

x→0
g(x) = L.

Solution. Let ε. Since lim
x→0

f(x) = L, there exists δ1 > 0 such that whenever 0 < |x| < δ1,

|f(x)− L| < ε.

Take δ = aδ1. Then whenever 0 < |x| < δ, we have 0 < |ax| < δ1. Therefore

|g(x)− L| = |f(ax)− L| < ε.
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